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Abstract

Mutation is theultimate sourceofall genetic variationand is, therefore, central toevolutionary change.PreviousworkonParamecium

tetraurelia found an unusually low germline base-substitution mutation rate in this ciliate. Here, we tested the generality of this result

among ciliates using Tetrahymena thermophila. We sequenced the genomes of 10 lines of T. thermophila that had each undergone

approximately 1,000 generations of mutation accumulation (MA). We applied an existing mutation-calling pipeline and developed a

new probabilistic mutation detection approach that directly models the design of an MA experiment and accommodates the noise

introducedbymismappedreads.Ourprobabilisticmutation-callingmethodprovidesa straightforwardwayofestimating thenumber

of sites at which a mutation could have been called if one was present, providing the denominator for our mutation rate calculations.

From these methods, we find that T. thermophila has a germline base-substitution mutation rate of 7.61�10� 12 per-site, per cell

division,which is consistentwith the lowbase-substitutionmutation rate inP. tetraurelia.Over thecourseof theevolutionexperiment,

genomic exclusion lines derived from the MA lines experienced a fitness decline that cannot be accounted for by germline base-

substitutionmutationsalone, suggestingthatothergeneticorepigenetic factorsmustbe involved.Becauseselectioncanonlyoperate

to reduce mutation rates based upon the "visible" mutational load, asexual reproduction with a transcriptionally silent germline may

allow ciliates to evolve extremely low germline mutation rates.

Key words: drift-barrier hypothesis, mutation accumulation, micronucleus, macronucleus, microbial eukaryote,

Oligohymenophorea.

Introduction

Mutation is the ultimate source of all genetic variation, and

the rate, molecular spectrum, and phenotypic consequences

of new mutations are all important drivers of biological pro-

cesses such as adaptation, the evolution of sex, the mainte-

nance of genetic variation, aging, and cancer. However,

because mutations are rare, detecting them is difficult, often

requiring the comparison of genotypes that have diverged

from a common ancestor by at least hundreds or thousands

of generations. Further, interpreting the results of such com-

parisons is complicated by the fact that mutations are

frequently eliminated by natural selection before they can

be studied.

Mutation accumulation (MA) is a standard method for

studying mutations experimentally. In a typical MA experi-

ment, many inbred or clonal lines are isolated and passed

repeatedly through bottlenecks. This reduces the effective

population size and lessens the efficiency of selection, allow-

ing all but the most deleterious mutations to drift to fixation

(Bateman 1959; Mukai 1964). The genome-wide mutation

rate and mutational spectrum can then be estimated by com-

paring the genomes of MA lines with those of their ancestors.
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Such direct estimates of mutational parameters are now avail-

able for a number of model organisms (Lind and Andersson

2008; Lynch et al. 2008; Denver et al. 2009; Keightley et al.

2009; Ossowski et al. 2010; Lee et al. 2012; Ness et al. 2012;

Sung, Tucker, et al. 2012; Keightley et al. 2014; Zhu et al.

2014). However, the narrow phylogenetic sampling of these

species still limits our ability to understand how mutation rates

and patterns have evolved and, in turn, have influenced evo-

lution across the tree of life.

Microbial eukaryotes are an extraordinarily diverse group,

containing many evolutionarily distant lineages, some of

which have unusual life histories and genome features (Katz

and Bhattacharya 2006). However, microbial eukaryotes are

often unsuitable for use in mutational studies because they are

difficult to culture in the lab, especially at the small population

sizes required to reduce the efficiency of selection in MA ex-

periments. In addition, genomic resources (e.g., completed

annotated reference genomes) are lacking for most eukaryotic

microbes. These barriers have limited MA experiments to well-

annotated model microbial eukaryotes such as Saccharomyces

cerevisiae (Lynch et al. 2008; Zhu et al. 2014),

Schizosaccharomyces pombe (Behringer and Hall 2015;

Farlow et al. 2015), Paramecium tetraurelia (Sung, Tucker,

et al. 2012), Dictyostelium discoideum (Saxer et al. 2012),

and Chlamydomonas reinhardtii (Ness et al. 2012; Ness et al.

2015; Sung, Ackerman, et al. 2012; fig. 1).

The ciliated unicellular eukaryote Tetrahymena thermophila

is well suited to MA experiments. Like all ciliates, individuals

from this species have distinct germline and somatic copies of

their nuclear genome. During asexual growth, the contents of

the germline genome are duplicated mitotically but are neither

expressed nor used to generate a new somatic genome. But

unlike most other ciliates (including P. tetraurelia, which

senesces in the absence of periodic mating or autogamy), T.

thermophila can be propagated this way indefinitely. Thus,

during periods of asexual growth—which can last over thou-

sands of generations (Doerder 2014)—mutations can accu-

mulate in the germline genome without being exposed to

natural selection, which is operating on the somatic

genome. Long et al. (2013) confirmed that MA lines of T.

thermophila can be propagated asexually for at least 1,000

generations and inferred that they accumulate mutations in

their germline genomes with detectable effects on fitness

after the mutations are expressed in the somatic genome.

However, Long et al. (2013) did not estimate the mutation

rate directly at the molecular level.

The only other existing MA experiment from a ciliate was

performed on Paramecium tetraurelia (Sung, Tucker, et al.

2012) and yielded the lowest known base-substitution muta-

tion rate in a eukaryote. Sung, Tucker, et al. (2012) suggested

that this exceptionally low mutation rate is the result of the

unusual life history of ciliates, in which a transcriptionally silent

germline genome undergoes multiple rounds of cell division

between sexual cycles. Measurement of the mutation rate of

T. thermophila will help reveal whether a low mutation rate is

a general feature of ciliates. In addition, natural populations of

FIG. 1.—Mutation rate estimates for unicellular eukaryotes. Base-substitution mutation rates per nucleotide per generation estimated for different

unicellular eukaryotes: T. thermophila (this paper), P. tetraurelia (Sung, Tucker, et al. 2012), C. reinhardtii (Ness et al. 2015), D. discoideum (Saxer et al. 2012),

Sa. cerevisiae (Zhu et al. 2014), and Sc. pombe (Farlow et al. 2015). The phylogenetic tree was retrieved from the Open Tree of Life (Hinchliff et al. 2015);

branch lengths are arbitrary. Error bars are 95% confidence intervals (ignoring uncertainty in the number of sites at which a mutation could be detected and

the number of generations for which each MA experiment ran).
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T. thermophila have been the focus of population-genetic

studies (Katz et al. 2006; Zufall et al. 2013), so mutational

parameters estimated from MA experiments can be related

to population and evolutionary processes.

Although the life history of T. thermophila is ideal for MA

experiments, some features of its genome complicate typical

computational approaches for detecting mutations from

short-read sequencing. The genome is extremely AT-rich

(~78% AT), contains many low complexity and repetitive el-

ements, and has an incomplete reference genome (Eisen et al.

2006). These features make mapping sequencing reads to the

reference genome difficult, which may lead to false positives

when using naive mutation detection methods. To overcome

these difficulties, we have developed a novel probabilistic mu-

tation detection approach that directly models the design of

an MA experiment and accommodates the noise introduced

by mismapped reads. We used both our new method and an

existing mutation-calling pipeline (Sung, Tucker, et al. 2012)

to analyse the MA sequences.

Here we expand the work presented by Long et al. (2013)

by directly estimating the base-substitution mutation rate in T.

thermophila. Our results are consistent with the exceptionally

low rate estimated for P. tetraurelia, indicating that low germ-

line mutation rates may be a general feature of ciliates. We

also use our estimated rate to calculate the effective popula-

tion size of T. thermophila in the wild. Our results establish

that it is possible to estimate the mutation rate of T. thermo-

phila directly from sequence data, but owing to the extraor-

dinarily low rate, longer and larger MA experiments will be

required to confidently estimate the mutational spectrum of a

species with such a low mutation rate.

Materials and Methods

Cell Lines

The 10 evolved cell lines that were used in this study were

generated from 10 parental MA lines (supplementary table

S1, Supplementary Material online). These lines were estab-

lished from a single cell of the strain SB210 as described in

Long et al. (2013). Briefly, the 10 MA lines were cultured in

rich medium (SSP) in test tubes (Gorovsky et al. 1975) and

experienced ~50 single-cell bottlenecks and ~1,000 cell divi-

sions, except for M28, which was bottlenecked 10 times and

passed ~200 cell divisions. The optical density of cultures was

measured prior to each transfer and the number of genera-

tions calculated using a standard curve of optical density for

the ancestor (Long et al. 2013). Because directly sequencing

the T. thermophila micronuclear genome is not feasible, we

generated autozygous lines with macronuclear genomes de-

rived from haploid copies of our ancestral and descendant

micronuclear genomes using genomic exclusion (Allen

1963). Genomic exclusion lines were produced by two

rounds of crossing between the MA lines (mating type VI)

and a germline-dysfunctional B* strain (mating type VII,

Bruns and Cassidy-Hanley, 1999). A mutation in the macro-

nuclear genome of a genomic exclusion line derived from an

MA line is assumed to correspond to a germline mutation in

that MA line.

We accounted for heterozygosity in the ancestral strain by

generating 19 independent genomic exclusion lines from the

progenitor line. The DNA from all 19 genomic exclusion lines

was pooled before library construction, allowing us to se-

quence both alleles at any heterozygous sites.

Whole-Genome Sequencing

DNA libraries with insert size ~350 bp were constructed and

Illumina paired-end sequenced by the DNASU core facility at

the Biodesign Institute at Arizona State University and the

Hubbard Center for Genome Studies, University of New

Hampshire. The mean sequencing depth is ~47�,

with>90% of the sites in the genome covered in all the se-

quenced lines (supplementary table S1, Supplementary

Material online). Sequencing reads are available from the

NCBI’s SRA database under a BioProject with accession

number PRJNA285268.

Base-Substitution Analysis

We used two independent approaches to call point-mutations

to avoid false negatives that might not be detected by a single

approach. First, a widely used consensus approach (Sung,

Tucker, et al. 2012). Second, a probabilistic approach that

adapts methods designed for family-based data to the

design of MA experiments (Cartwright et al. 2012). Our list

of candidates was generated by the union of calls from both

methods.

Consensus Approach

For the consensus approach we applied the following filters to

reduce false positives that may arise from sequencing, read

mismapping or library amplification errors. 1) Two mapping

programs, BWA 0.7.10 (Li and Durbin 2009) and novoalign

(V2.08.01; NOVOCRAFT Inc), were used in two independent

pipelines to reduce algorithm-specific read mapping errors. 2)

Only uniquely mapped reads were used (BWA option: sampe

–n 1; NOVOCRAFT option: novoalign –r None), with mapping/

sequencing quality scores> 20 (samtools mpileup –Q 20 –q

20). 3) The line-specific consensus nucleotide at a genomic site

needed support from greater than 80% of reads to filter out

false positives from mismapping of paralog reads. 4) Three

forward and three reverse reads were required to determine

the line-specific consensus nucleotide, to reduce false positive

calls due to errors in library construction or sequencing.

Putative mutations were then called if a single line was differ-

ent from the consensus of all the remaining lines following the

approach of Sung, Tucker, et al. (2012). This approach has

been applied to a wide variety of prokaryotic and eukaryotic
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organisms and repeatedly verified with Sanger sequencing

(Denver et al. 2009; Ossowski et al. 2010; Lee et al. 2012;

Long et al. 2015; Sung et al. 2015). The consensus approach

also makes predictions consistent with those of the GATK SNP

caller (Behringer and Hall 2015; Farlow et al. 2015).

Probabilistic Approach Using accuMUlate

The challenge of identifying mutations from genomic align-

ments can also be treated as a hidden-data problem

(Cartwright et al. 2012). Figure 2 illustrates the application

of a hidden-data approach to our MA experiment. For a

given site in the reference genome, the only data we observe

directly is the set of sequencing reads mapped to that site. In

order to determine if a mutation has occurred at the site, we

have to consider the processes by which the read data was

generated. These processes include biological processes (e.g.

inheritance, mutation, genomic exclusion) and experimental

processes that can introduce errors (e.g. library preparation,

sequencing, data processing). Because none of these states

are directly observed, we consider them to be hidden data.

Each unique combination of hidden states represents a distinct

history that could have generated the read data for a given

state. See figure 3 for an example of one such history with

hidden and observed data illustrated.

With the above formulation, our challenge is to determine

the probability that a site contains at least one de novo mu-

tation using our sequencing data (RÞ as the only observed

input

PðmutationjR; �Þ ¼
Pðmutation; R; �Þ

PðR; �Þ
: ð1Þ

Here, Pðmutation; R; �) is the joint marginal probability of

at least one mutation being present and the sequencing data,

and P R; �ð Þ is the marginal probability of the sequencing

data. The parameter � represents the model parameters

and consists of the following:

. �, the proportion of sites in the ancestor that are heterozy-
gous, approximately (see equation 6);

. ’A, the overdispersion parameter for sequencing of the an-
cestor (described below);

. ’D, the overdispersion parameter for sequencing of the de-
scendant lines (described below);

. p, a vector representing the frequency of each nucleotide in
the ancestral genome;

. �, the experiment-long mutation rate per site;

. e, the rate of sequencing error per site.

The numerator and denominator in equation (1) are mar-

ginal probabilities. To calculate them from the full data we

have to sum the probability of mutation over the full set of

histories (H). Each of these histories is a unique combination of

hidden states that could have generated the read data (an

example of one such history is shown in fig. 3),

PðmutationjR; �Þ ¼

P
h2HPðmutation; R; h; �ÞP

h2HPðR;h; �Þ

¼

P
h2HPðmutationjhÞ PðR; h; �ÞP

h2HPðR;h; �Þ
:

ð2Þ

Note that the probability of there being at least one mutation

in a given history h, P mutationjhð Þ, is known to be either 1 or

FIG. 2.—Experimental design in relation to parameters of probabilistic

mutation-detection model. A complete description of the experiment is

presented in Long et al. (2013). Here, we describe how the experiment

relates to the parameters used in our probabilistic mutation-calling model.

Specifically, the ancestral line with average heterozygosity � and genome-

wide nucleotide frequencies p is used to generate a set of MA lines. Each

of these lines accumulates mutations at a rate � per nucleotide site per

generation for 1000 generations. Genomic exclusion, an auto-diploidiza-

tion process, is used to generate lines with macronuclei representing one

haploid-copy of each MA line (and multiple copies of the ancestral line, in

order to detect ancestral heterozygosity). The macronuclear genomes of

these genomic exclusion lines are then sequenced with a sequencing error

rate of e and overdispersion caused by library preparation and other cor-

related errors modeled as ’A and ’D for ancestral and descendant lines

respectively. A full description of this model and its parameters is given in

the subsection of the Materials and Methods labeled "Probabilistic ap-

proach using accuMUlate".

Long et al. GBE

3632 Genome Biol. Evol. 8(12):3629–3639. doi:10.1093/gbe/evw223 Advance Access publication September 15, 2016

Deleted Text: <italic>a</italic>
Deleted Text: <italic>u</italic>


0. Therefore, we only need to calculate PðR; h; �Þ, the prob-

ability of the full data for the set of model parameters. This

amounts to finding the probability that the read data was

generated from an ancestral genotype GA that gave rise to

descendants with genotypes specified by the particular history

being considered. This can be calculated as the products of the

prior probability of genotypes and the likelihoods of those

genotypes given the set of all sequencing data (R),

PðR; h; �Þ ¼ PðGA; �; pÞ|{z}
a

� PðRAjGA; ’A; eÞ|{z}
b

�

Yn

i

PðGijGA; p; �Þ|{z}
c

� PðRijGi; ’D; eÞ|{z}
d

2
66664

3
77775:

ð3Þ

The elements of R are vectors of size four, and each con-

tains the number of A, C, G and T bases mapped to this site

for a particular sample (the pileup data). The specific element

RA represents base counts from the ancestral strain. Ri and Gi

are the base counts and genotype of the i-th descendant lines,

respectively, and n is the total number of descendants.

The terms labeled "b" and "d" in equation (3) are the

probabilities of the observed sequencing data for a given ge-

notype (i.e. genotype likelihoods). We calculate these geno-

type likelihoods using a Dirichlet-multinomial (DM)

distribution. The DM is a compound distribution in which

event-probabilities, p, of a multinomial distribution is a

Dirichlet-distributed random vector. Using a compound distri-

bution provides flexibility to model the complex sources of

error in sequencing data. To make this property of our

model explicit, we use a parameterization of the DM distribu-

tion where p is a vector of length four containing the expected

proportion of reads matching each allele and ’ is an over-

dispersion parameter with values in the interval ½0;1�. Using

FIG. 3.—Illustration of a single history in the accuMUlate method. In our model, a history is a unique combination of states (i.e. the genotypes of ancestral

and MA lines, results of genomic exclusions and errors introduced during sequencing) generated during an MA experiment. Here we illustrate one such

history by giving values to the different states in a model reflecting the same experimental design as fig. 2 and show how we calculate the probability that this

history occurred and generated the observed sequencing data. Because we treat sites in the reference genome independently, we describe the process for a

single site. Specifically, we consider a history in which an ancestor that is heterozygous with genotype A/T is used to establish three MA lines. One of those

lines experiences a mutation from A/T to A/C, and the C allele of this mutant is passed on to a new macronuclear genome through genomic exclusion. The

only data we observe for this locus is the set of bases mapped to this site that pass our filtering steps. We represent this data as vectors containing the number

of A, C, G, and T bases mapped to a given site (the base counts). We can use equation (3) to calculate the probability that this sequencing data was

generated by the specific history shown here. To do this, we first calculate the probability that the ancestor would have genotype A/T and that the observed

sequencing data from the ancestor could be generated from this genotype (using equations (6) and (4), respectively). Next, we consider the MA (descendant)

lines, calculating the probability that the three descendant lines would have genotypes A, T and C and that the observed sequencing data could be generated

from these genotypes. In this case, we use the Felsenstein (1981) model of nucleotide substitution to calculate the probabilities that genomic exclusions

generated from the MA lines would have these genotypes. We use the same genotype likelihood model (equation 4) to calculate the probability that the

sequencing data was generated from MA lines with these genotypes. Because each of the descendant lines is independent of each other, the overall

probability of the history is simply the product of the probabilities for the ancestral and all descendant lines (equation 3). We calculate the probability of a site

containing at least one mutation by repeating this procedure for all possible histories at a given site (i.e. all possible combinations of genotypes) and keeping

track of those histories that contain one or more mutations (equation 2).
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this parameterization, the DM distribution is equivalent to a

simple multinomial distribution when ’= 0 and becomes in-

creasingly overdispersed (i.e. the variance increases) as ’ tends

to 1.

We demonstrate the calculation of genotype likelihoods

using the term for the ancestral genotype in equation (3)

("b" term) as an example. To calculate PðRAjGA; ’A; eÞ, we

use the probability mass function of the DM distribution

P RA¼ rjGA¼ g; ’A; e
� �

¼
N

r

� �
� !Að Þ

� !A þ Nð Þ

Y
b

�ðpb!A þ rbÞ

�ðpb!AÞ
:

ð4Þ

Here N is the total number of reads, N
r

� �
is the multinomial

coefficient, � is the gamma function, and !a ¼ 1� ’A

� �
=’A.

The parameter vector p contains the expected frequency of

bases in {A, C, G, T} for the site under consideration and is

indexed by b. Values in p are determined by both the proba-

bility of sequencing error (e) and the ancestral diploid geno-

type g ¼ fg1; g2g following equation (5).

pb ¼

1� e; if b ¼ g1 ¼ g2 ðhomozygous matchÞ

1

2
�

e

3
; if b ¼ g1 6¼ g2 or b ¼ g2 6¼ g1 ðheterozygous matchÞ

e

3
; otherwise ðerror=mismatchÞ

8>>>><
>>>>:

ð5Þ

We now consider the remaining terms in equation (3). The

term labeled "a" represents the prior probability that the an-

cestor had a particular genotype (gA below) at the site under

consideration given the nucleotide composition of the T. ther-

mophila genome and average heterozygosity of the ancestral

strain. We calculate this via a finite-sites model with parent-

independent mutation,

P GA ¼ gA; �; pð Þ ¼

pb1

1

1þ �
þ pb1

pb2

�

1þ �
if g1 ¼ g2 ¼ b1

ðhomozygoteÞ

2pb1
pb2

�

1þ �
if g1 ¼ b1 and g2 ¼ b2

ðheterozygoteÞ

:

8>>>>>>>><
>>>>>>>>:

ð6Þ

Here 1
1þ� is the probability that the ancestor is autozygous at a

site, and p is the vector of stationary nucleotide/allele frequen-

cies in ancestral genome and b1 and b2 refer to the indices of

the g1 and g2 alleles. See Wright (1949) for more details on

this model and its biological assumptions.

To complete equation (3) we need to consider the term

labeled "c", which represents the probability that the i-th MA

line inherited a particular genotype, given the ancestral geno-

type and the probability of mutation. We calculate this via

the Felsenstein (1981) model of nucleotide substitution. This

model incorporates equilibrium nucleotide frequencies, allow-

ing us to include the extreme AT-bias present in the T. thermo-

phila genome.

Using the approach described above, we used equation (2)

to calculate both the probability of at least one point-mutation

and the probability of exactly one point-mutation at every site

along the T. thermophila reference genome. In MA experi-

ments, multiple mutations at the same site are unlikely; there-

fore, sites that contain a strong signal of more than one

mutation are likely false positives due to systematic errors in

sequencing and mapping of reads.

This model is implemented in a C ++ program called

accuMUlate, which makes use of the Bamtools (Barnett

et al. 2011) library. The source code used to perform the cal-

culations described above is available under an MIT license

from https://github.com/dwinter/accumulate; the specific ver-

sion of the code used in these analyses is archived at http://dx.

doi.org/10.5281/zenodo.19942. We ran our model on a ge-

nomic alignment produced by using Bowtie version 2.1.0

(Langmead and Salzberg 2012) to map reads to the

December 2011 release of the T. thermophila macronuclear

genome from the Tetrahymena Genome Database (Stover

et al. 2006). One site in the reference contained a gap char-

acter, which we removed since our reads indicated that it was

an artifact. We processed the resulting alignments to remove

sequencing and mapping artifacts that could lead to false-

positive mutation calls. In particular, we identified and

marked duplicate reads using the MarkDuplicates tool from

Picard 1.106 (http://pricard.sourceforge.net) and performed

local realignment around potential indels using GATK 3.2

(DePristo et al. 2011; McKenna et al. 2010). We adjusted

raw base quality scores by running GATK’s BaseRecalibrator

tool, using a set of putative single nucleotide variants detected

with SAMtools mpileup as input (Li et al. 2009).

The putative mutations from this approach were prelimi-

narily identified by running accuMUlate to identify sites with a

mutation probability>0.1 with parameter-values:

’A ¼ ’D ¼ 0:001, e ¼ 0:01, � ¼ 10�8, � ¼0.0001 and only

considering reads with Phred-scaled mapping and base quality

scores� 13 (corresponding to an estimated 5% probability of

error). The validation phase showed that false-positive muta-

tions were frequently associated with poorly-mapped reads,

low coverage regions surrounding deletions with respect to

the reference genome, or the presence of rare bases in all

samples. Thus, we re-ran the accuMUlate model, excluding

all reads with a mapping quality< 25 (corresponding to an

estimated 0.3% chance of error), and using the overdispersion

parameters ’A ¼ 0:03 and ’D ¼ 0:01. Setting ’A > ’D al-

lowed us to accommodate the increased variance generated

by sequencing pooled genomic exclusion lines to infer the

ancestral genotype. In addition, we filtered out putative mu-

tations that were not supported by at least 3 reads in both

forward and reverse orientation. This final filtering step re-

moved sites with unusually low coverage and those displaying
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strand bias, both characteristics associated with mismapped

reads. We investigated the influence of our over-dispersion

parameters by calculating the overall likelihood of the data

using the initial and final parameter values. In order to make

these results directly comparable, these calculations were per-

formed on a data set consisting of all bases with quality

score� 13 from reads with a mapping quality� 25.

Validation of Putative Mutations

The validity of a subset of putative mutations was tested by

Sanger sequencing. All mutations identified by either the con-

sensus or the probabilistic approach were tested with suitable

primers up to 500 bp away from the mutation site. Primers

were designed using the default parameters of Primer3

(Koressaar and Remm 2007; Untergrasser et al. 2012) as im-

plemented in Geneious (Kearse et al. 2012). Successful PCR

products were purified and directly sequenced at Lone Star

Labs (Houston, TX).

Mutation Rate Calculations

Our probabilistic approach to mutation detection also provides

a way to calculate the number of sites at which we could have

detected a mutation if one was present, and thus the correct

denominator to use for mutation rate calculations. Using our

final model parameters, we shuffled the vector of read-counts

generated from a given sample in order to simulate mutations

in our data. This procedure was repeated for every site in the

reference genome, shuffling the read counts from each de-

scendent separately then recalculating the probability of a

mutation. A site was treated as missing from a sample if the

mutation probability calculated from shuffled read-counts

was< 0.1 or if the most probable mutant allele was not

supported by at least 3 reads in both the forward and the

reverse orientation. To investigate the impact of our final pa-

rameter values and filtering criteria on the number of callable

sites we repeated this procedure using the initial parameter set

(i.e. with ’A ¼ ’D ¼ 0:001 and removing reads with mapping

quality< 13). The number of callable sites detected using this

approach for each line is given in Table 1.

We calculated the mutation rate by summing the number

of validated mutations nið Þ across MA lines, and then dividing

it by the product of the number of analyzed sites (L) and the

number of generations (T) in each MA line (i): �̂¼
P

ini= LTð Þ.

Assuming that the number of mutations in each line follows a

Poisson distribution (but not necessarily the same distribution)

and ignoring uncertainty in our estimates for L and T, the

standard error for our estimate of mutation rate was esti-

mated as SE �̂ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂= LTð Þ

p
, and a 95% confidence interval

was constructed as ±�̂ 1:96SEð�̂). We also performed the

same calculation on log-transformed values of �̂, L, and, T

to produce a "log-space" confidence interval. To calculate

genomic mutation rates we assumed a haploid genome size

of 104 Mb (Eisen et al. 2006).

Annotation of Mutations

We annotated the functional context of identified mutations

using snpEff (Cingolani et al. 2012) and the December 2011

release of the T. thermophila macronuclear genome annota-

tion file from the Tetrahymena Genome Database.

Results

Mutation Detection and Validation

To estimate the micronuclear mutation rate, we sequenced

the whole macronuclear genomes of 10 homozygous

Table 1

Summary of sequencing data and detected mutations

Callableb Mutation

Line Coverage Generations Fitnessa Initial Final Scaffold Substitution Feature Locus Effect

M5 64.17 1000 0.56 0.92 0.88 scf_8254658 g.334881C>T Exon TTHERM_00675900A Synonymous

(gaC>gaT, D>D)

M19 53.05 1000 0.64 0.93 0.88 — — — — —

M20 34.42 1000 0.44 0.93 0.88 scf_8254594 g.239327A>T Intron TTHERM_00286840A —

M25 30.88 1000 0.57 0.93 0.88 scf_8254607 g.179325C>T Exon TTHERM_00439220A Non Synonymous

(Gtt>Att, V>I)

M28 50.65 200 0.65 0.92 0.87 — — — — —

M29 31.36 1000 0.49 0.93 0.88 scf_8254365 g.304140T>G Intergenic — —

M40 16.84 1000 0.57 0.83 0.63 scf_8254002 g.27830G>A Exon TTHERM_01128590A Non Synonymous

(tGt>tAt, C>Y)

M50 106.65 1000 0.38 0.93 0.88 — — — — —

NOTE.—no mutations were detected from lines M50, M28, or M19.
aFitness data from Long et al. (2013), using exponential growth rate as fitness metric and normalized by dividing by the ancestral growth rate.
bThe proportion of all sites in the MAC genome (104 Mb) from which a mutation could have been called if one was present. "Initial" refers to the first analysis (with

reads with mapping quality< 13 removed and parameter values ’A ¼ 0:001; ’D ¼ 0:001), "final" refers to the subsequent analysis (with reads with mapping quality< 30
removed and putative mutations supported by< 3 read in forward and reverse orientation removed, and with parameter values ’A ¼ 0:03; ’D ¼ 0:01).
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genomic-exclusion lines, each derived from a separate T. ther-

mophila line that had undergone MA for approximately 1000

generations. Using two different mutation-detection

approaches (a widely used "consensus" method and a new

probabilistic approach described in the Materials and

Methods), we identified 92 sites for which there was some

evidence of a mutation in at least one lineage. On closer in-

spection we found an unusual pattern—more than half of the

apparent mutations were from lines M47 and M51, and in

many cases reads containing the apparent mutant allele from

one of these lines were also sequenced from the other line

(but absent or very rare in all other lines).

To investigate this anomaly further, we analyzed the fre-

quency of non-reference bases in all samples across the whole

genome (supplementary Data, Supplementary Material

online). These analyses demonstrated that M47 and M51

differ from all other lines in the frequency of non-reference

bases and in patterns of sequencing coverage. We do not

know what caused the anomaly. It is possible that some cel-

lular process occurred in these lines but not others (e.g. the

incorporation of sequences usually restricted to the micronu-

cleus, or the inclusion of DNA from the B* strain during ge-

nomic exclusion). It is extremely unlikely that M47 and M51

independently accrued more shared mutations than indepen-

dent mutations during our MA experiment. For this reason,

we have excluded these lines from all subsequent analyses.

Forty putative mutations remained after lines M47 and

M51 were removed (supplementary table S2,

Supplementary Material online). We attempted to validate

each of these mutations using Sanger sequencing. Only

four of these mutations were validated. The remaining

sites were either shown to be false positives (11 sites) or

failed to generate either PCR amplicons or clean sequence

traces (25 sites). Closer inspection of the data underpin-

ning both the false positive and inconclusive mutations

showed these sites to have unusually low sequencing cov-

erage and low mapping quality, and to be subject to

strand bias. All of these properties are associated with

mapping error, and are known to generate false positive

variant calls (Li 2014). For this reason, we re-ran our prob-

abilistic mutation caller using stricter filters for mapping

quality and excluding putative mutations that did not have

at least three sequencing reads supporting a mutation in

both the forward and reverse orientation. None of the

inconclusive or false positive sites were called as mutations

in this analysis, which also detected an additional muta-

tion that was confirmed by Sanger sequencing. Thus, we

detected a total of five mutations across eight MA lines,

with no line having more than one confirmed mutation

(table 1). Our probabilistic method produced more false

positives than the consensus approach but generated no

false negatives (supplementary table S2, Supplementary

Material online). Of the five mutations detected, two are

non-synonymous, two are synonymous, and one is in an

intergenic region.

Number of Callable Sites

We estimated the denominator for our mutation rate esti-

mates by calculating the number of sites at which a mutation

could be called if one was present. An average of 86.1% of

the reference genome was callable per line (table 1). Sites for

which we lacked power to detect mutations in at least one line

are in relatively gene-poor regions; 30% of such sites are in

exons compared to 49% of always-included sites. We also

considered the impact of our final filtering steps and model

parameters on our analyses. The more stringent filtering steps

we used to generate our final mutation set reduced the pro-

portion of callable sites per line, with the median proportion of

callable sites declining from 93% to 88% (table 1). The final

overdispersion values used in our probabilistic mutation caller

produced a better fit to our data than the initial values, with

the overall log likelihood improving by 8�104.

Mutation Rate

Given the number of callable sites, the 5 mutations that we

detected yield a base-substitution mutation rate estimate of

7.61�10�12 per base pair per asexual generation (95% con-

fidence interval, CI = [0.691�10�12, 14.53�10�12] using

the standard method or [4.68� 10�12, 12.38�10�12]

using log-transformed values). This point estimate is approxi-

mately one third of the rate reported for P. tetraurelia, al-

though the 95% CIs of both estimates overlap (fig. 1), and

equates to a genome-wide rate of 0.8 base-substitution mu-

tations per haploid genome per thousand asexual generations

(95% CI = [0.07, 1.50]).

If our estimate of the base-substitution mutation rate holds

for the portions of the genome from which we did not have

sufficient power to detect mutations, then we estimate that

we have failed to detect an additional 0.87 mutations across

all of the macronuclear genomes sequenced.

Discussion

We have used whole-genome sequencing and a novel muta-

tion-detection approach to estimate the base-substitution mu-

tation rate of T. thermophila from 8 MA lines (Long et al.

2013) and obtained an estimate of 7.61�10�12 mutations

per-site per-generation. This is the lowest estimate of base-

substitution mutation rate from a eukaryote (for surveys of

mutation-rate estimates see fig. 1 and Sung, Tucker, et al.

2012), and indeed lower than that observed in any prokary-

ote. However, it is not significantly different from the rate in

either the social amoeba Dictyostelium discoideum (Saxer et al.

2012) or the ciliate P. tetraurelia (Sung, Tucker, et al. 2012).

The fact that the two lowest mutation rates have been re-

corded in ciliates supports the hypothesis that ciliates in
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general have low germline mutation rates (Sung, Tucker, et al.

2012).

Direct estimates of the mutation rate from MA lines can only

be as accurate as the methods used to detect mutations. Our

estimateofa lowmutationrate inT. thermophilacouldconceiv-

ably result from a high rate of false-negative results. However,

webelieve that this isunlikely.Ourapproach tomutationdetec-

tionwasdesignedtomaximizethesensitivityofouranalyses.We

initially applied lenient filters to our data and attempted to val-

idateall putative mutations detectedby two separate methods.

Most of the putative mutations suggested by this initial analysis

couldnotbevalidatedbySangersequencing.Forthisreason,we

developedfiltersandmodel-parameters that improved the spe-

cificity of our mutation-calling method (producing negligible

mutation probabilities for all of our unconfirmed mutations,

while still supporting our confirmed mutations). It is possible

that this increased stringency also led us to miss mutations pre-

sentinourdescendantlines.Toaccountforthepossibilityofsuch

false negatives in our mutation rate estimates, we simulated

mutations in our data. This allowed us to identify sites at which

wewouldnotbeable todetect a mutation ina given line even if

one was present. Sites for which we could not call a simulated

mutationwerenot includedinthedenominatorofourmutation

rate calculation. Thus, we are confident that our mutation rate

estimate is accurate,at least for the regionsof thegenomefrom

which we could call mutations.

Ourmutationrateestimateallowsustoestimatetheeffective

populationsizeofT.thermophila. Ifweassumethatsilentsites in

protein-codinggenesareeffectivelyneutralandunderdrift-mu-

tation equilibrium, the population-level heterozygosity at silent

sites (ps) has expected value 4Ne�, where Ne is the effective

population size, and� is mutation rate per site per generation.

Using the estimate Ne�= 8�10� 4 reported by Katz et al.

(2006), if we assume that mutation rates in the germline and

somaticgenomesareequal,ourNeestimateforT.thermophila is

1.12�108, which is almost identical to that of P. tetraurelia

(Ne=1.24� 108; Sung, Tucker, et al. 2012). These estimates

may seem surprising given the observations that P. tetraurelia

is cosmopolitanand regularly isolated fromdifferent continents

(Catania et al. 2009), while T. thermophila has a distribution

limited to the eastern United States (Zufall et al. 2013).

However, the relationship between census population size

and genetic diversity (and therefore estimated Ne) is not a

simple one (Leffler et al. 2012; Lewontin 1974). In very large

populations stochastic processes, including demographic

events that prevent populations from reaching mutation-drift

equlibrium(HaighandMaynardSmith1972; Leffleretal. 2012)

and the effects of selection on sites linked to neutral variants

(Gillespie 2001; Lynch 2007; Neher et al. 2013), limit genetic

diversity across the whole genome. Regardless, the large effec-

tive population size estimated here suggests that selection will

have considerable power in the evolution of T. thermophila.

The unusual genome structure and life history of ciliates

may explain their low mutation rates. Sung, Ackerman, et al.

(2012) argued that mutation rates are minimized to the extent

made possible by the power of natural selection—the "drift

barrier" hypothesis. Selection operates to reduce the mutation

rate based on the "visible" mutational load, and mutations

that accumulate in the germline genome in ciliates during

asexual generations are not expressed and exposed to selec-

tion until they are incorporated in a new somatic genome

following sexual reproduction. Thus, the mutation rate per

selective event is equal to the mutation rate per asexual gen-

eration multiplied by the number of asexual generations be-

tween rounds of sexual reproduction. The low mutation rates

reported for ciliates may have evolved naturally as a conse-

quence of the many asexual generations in between bouts of

sexual reproduction, combined with large effective population

sizes that promote strong selection for low mutation rates.

Unlike P. tetraurelia, T. thermophila does not undergo se-

nescence in the absence of sex, and we lack a good estimate

for the frequency of sexual reproduction in natural popula-

tions (Doerder et al. 1995). Therefore, we cannot put an upper

bound on the number of asexual generations between con-

jugation events. However, we can estimate a lower bound

because cells arising from sexual reproduction enter a period

of immaturity lasting ~50–100 divisions (Lynn and Doerder

2012). We know that the germline genome divides at least

this many times without opportunity for selection on any

newly acquired mutations. Using the immaturity period as a

proxy for the frequency of sex gives an estimate of the base-

substitution mutation rate of ~0.1 mutations per haploid

genome per conjugation event — much closer to that of

other eukaryotes per round of DNA replication (Sung,

Tucker, et al. 2012).

Most mutations with effects on fitness are deleterious, so

the accumulation of mutations in the absence of selection is

expected to lead to a reduction in organismal fitness (Bateman

1959; Halligan and Keightley 2009; Mukai 1964; Muller

1928). The fitness of a genomic exclusion line derived from

an MA line of T. thermophila should, in part, reflect the germ-

line mutations in that MA line. If most germline mutations are

base-substitutions, the low germline base-substitution rate

would lead us to predict modest effects on the fitness of

the genomic exclusion lines we studied. Surprisingly, some

of these lines experienced substantial fitness losses relative

to the ancestor (Long et al. 2013). For example, we did not

detect any base-substitution mutations in the line with largest

observed loss in fitness (M50, w = 0.38) (table 1). It is unlikely

that the fitness losses observed in these MA lines can be ex-

plained by other undetected single-base substitutions, as our

mutation calling method had power to detect mutations in an

average of 86.1% of the genome (table 1) and the excluded

portion of the genome is relatively gene poor. Rather, it seems

likely the fitness of these lines is determined in part by indels

and other structural variants that we did not include in this

study. Furthermore, non-Mendelian patterns of inheritance

could obscure the relationship between mutations and fitness.
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For example, the fitness of an individual line may be influenced

by epigenetic processes, such as cortical inheritance

(Sonneborn 1963) or small RNA-guided genome rearrange-

ment (Mochizuki and Gorovsky 2004).

Our probabilistic mutation calling method can directly

model the overdispersion produced by modern sequencing

techniques. Our initial run of this method used very low

values for the overdispersion parameters and produced

many false positive mutation calls. We believe that these

false positives arose from sites with data that did not fit the

expectation of relatively clean data that these low overdisper-

sion values represent. Using data form the validation phase,

we were able to show that increasing the overdispersion pa-

rameter values (and being more stringent about which se-

quencing reads were included in our analysis) improved the

accuracy of our method such that it produced fewer false

positives while still correctly identifying all validated mutations.

In addition to improving the accuracy of our mutation calling,

increasing the values of the overdispersion parameters sub-

stantially increased the fit of our model to the sequencing

data. Although the small number of true mutations in this

experiment prevents us from performing a more complete

analysis, this study demonstrates that modeling overdispersion

in sequencing data can improve mutation calling methods.

In this study, we have established that it is possible to detect

mutations in T. thermophila MA lines through short-read se-

quencing, and thus to directly study the nature of mutation in

this model organism. Although we were able to show that T.

thermophila shares a low mutation rate with P. tetraurelia (the

only other ciliate for which a mutation rate has been directly

estimated), there is still much to learn about mutation in this

species. For instance, the unusual genome structure of ciliates

presents a novel test of the drift-barrier hypothesis of mutation

rate evolution (Sung, Ackerman, et al. 2012). If the mutation

rates of the germline and somatic nuclei can evolve indepen-

dently then we would expect the somatic mutation rate to be

higher (i.e. more similar to the mutation rates of other eukary-

otes) because somatic mutations are exposed to selection

after each cell division. Furthermore, the small number of mu-

tations accumulated over this experiment has prevented us

from analyzing the spectrum of mutations arising in T. ther-

mophila and determining the influence of mutational biases

on genome evolution. Similarly, the few mutations that we

detect seem inadequate to explain the observed losses of fit-

ness during MA. Future studies using more MA lines evolving

over longer periods and detecting indels and other structural

variants accrued during MA will be needed to fully understand

the effects of mutation and selection in T. thermophila.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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